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Figure 1: Overview of the digital twin methodology for developing and validating Decentralized FL (DFL) algorithms.
Stage 1 (Simulation) enables rapid prototyping and algorithmic exploration, while Stage 2 (Emulation) provides hardware-
aware validation with realistic network conditions and resource constraints.

Abstract

This work presents a two-stage digital twin methodology
for developing and validating DFL algorithms on resource-
constrained microcontrollers. The first stage, our simulation-
based twin, enables rapid prototyping and algorithm explo-
ration without hardware constraints, while the second stage,
based on leveraging several hardware emulation instances in
a containerized environment, provides hardware-aware val-
idation under realistic conditions including network delays,
resource limitations, and communication protocols. This ap-
proach bridges the critical gap between research and deploy-
ment, enabling performance analysis at a pace impractical
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with physical hardware alone. We demonstrate how this digi-
tal twin pipeline is essential for robust Machine Learning Op-
erations (MLOps) in IoT environments, allowing for scalable,
cost-effective testing of decentralized tiny ML. Our results
across simulation, emulation, and a cluster of real ESP32-
S3 microcontrollers show that our twins faithfully reproduce
physical device behavior, making it a valuable framework for
advancing tiny, decentralized Al
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1 Introduction

The proliferation of tiny Internet of Things (IoT) devices
has created unprecedented opportunities for distributed in-
telligence. However, developing and validating robust DFL
algorithms for these resource-constrained microcontrollers
presents significant challenges.

Motivation. Traditional federated learning approaches face
several barriers when deployed on capable IoT devices [2],
let alone constrained microcontrollers. DFL eliminates the
need for central servers, enabling direct model sharing among
devices. This not only addresses privacy concerns but also re-
duces single points of failure, making it a promising paradigm
for decentralized intelligence on tiny devices [3, 4, 7].
Challenge. Unlike centralized federated learning that relies
on powerful edge or central servers, DFL on microcontrollers
operates under severe constraints: extreme memory limita-
tions (typically <1IMB RAM), limited computational capac-
ity, and unreliable network connectivity [8]. Real-world IoT
deployments suffer from intermittent connectivity, frequent
hardware failures, and unpredictable network conditions [5],
making algorithm validation particularly challenging.
Problem Statement. Existing evaluation methodologies fall
short of addressing these challenges. Pure simulation, while
fast and scalable, abstracts away hardware constraints and
real-world network behaviors. Physical testbeds provide mea-
surement results but are limited in scale, expensive to deploy,
and difficult for systematic experimentation. This methodolog-
ical gap hinders the development of DFL for tiny devices.
Contribution. We propose Zwe®, a systematic two-stage dig-
ital twin methodology that combines the speed of simulation
with the fidelity of hardware emulation!. This approach pro-
vides a complete development and evaluation pipeline for tiny
DFL systems, enabling developers to progress from algorithm
design through hardware-aware validation to deployment-
ready systems. Our methodology enables MLOps practices
for tiny IoT, facilitating faster development cycles while ensur-
ing thorough algorithm testing before physical deployment.

2 Two-Stage Digital Twin Methodology

Our methodology comprises two digital twins: one based
on simulation and another on hardware emulation (Fig. 1).
This approach provides a systematic pathway from algorithm
conception to deployment-ready systems through two com-
plementary stages, each serving a distinct but interconnected
purpose in the development pipeline.

> Stage 1: Rapid Prototyping with Simulation.

The first stage of Zwe® is a simulation-based digital twin that
enables rapid algorithm development and exploration without
hardware constraints. This stage allows researchers to quickly

17we? is an abbreviation for “Zwei Zwergzwillinge”, combining (1) “Zwei”
(two), (2) “Zwerg” (tiny) and (3) “Zwillinge” (twins).
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(a) A photo showing four (out of
10) ESP32-S3 devices connected
to the host. (b) Measurement Scheme

Figure 2: Physical testbed setup.

iterate on new DFL approaches, test different configurations,
and optimize hyperparameters across diverse data distribu-
tions. Our simulation stage uses a Python-based environment
built around PyTorch and NumPy, helping developers cre-
ate and evaluate their algorithms without the challenges of
low-level coding and hardware limitations. This stage en-
ables: (i’ Algorithmic Exploration: Rapid iteration on new
DFL approaches, including training algorithms, segmentation
strategies, and aggregation methods. Researchers and devel-
opers can test different configurations in hours rather than
days. (i Hyperparameter Optimization: Systematic tuning of
learning rates, batch sizes, local epochs, and communication
frequencies across diverse data distributions. Gii. Scalabil-
ity Analysis: Testing with hundreds or thousands of virtual
devices to understand algorithmic behavior at scale, identi-
fying potential bottlenecks before hardware implementation.
iv Statistical Validation: Multiple independent runs enable
robust statistical analysis of algorithm performance, providing
confidence intervals and significance testing.

> Stage 2: High-Fidelity Hardware Emulation.

Our emulation digital twin creates networks of virtual mi-
crocontrollers running firmware identical to that on physical
devices. This provides: @' Hardware-Realistic Constraints:
Accurate memory limitations, processing delays, and timing
behaviors that match physical microcontrollers. Each em-
ulated device shares the same microarchitecture and oper-
ates under the same resource constraints as real hardware.
it Networking-in-the-Loop: Full TCP/IP stack implementa-
tion with realistic network delays, packet loss, and bandwidth
limitations. Devices communicate through virtual network
interfaces that approximate real conditions. Furthermore, the
traffic control (TC) component available in the Linux kernel
helps emulate different networking scenarios for each instance
separately. (iii Firmware Validation: Identical C programs run
in both emulation and on physical hardware, ensuring soft-
ware compatibility and eliminating abstraction gaps. v Sys-
tematic Experimentation: Controlled network conditions en-
able reproducible experiments while maintaining hardware
fidelity, supporting performance evaluation. %k Scalability:
The containerized environments not only facilitate MLOps
but also enable vertical (resource) and horizontal (instance
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Figure 3: Comparison of convergence through time for our
two digital twins and real measurements on ten devices.

count) scaling. This allows developers to evaluate their meth-
ods at a scale not easily achievable with real hardware. The
ability to emulate cross-silo FL using separate environments
is an added benefit. Our emulation environments run inside a
host machine. We implemented our second twin in C, includ-
ing components with shared logic such as the Segmentation,
Monitoring, and Aggregation modules. We use AIfES [8] for
on-device training and inference.

> Final Stage: Physical Hardware Validation.

Our physical testbed consists of up to 10 ESP32-S3 microcon-
trollers (Fig. 2) running identical firmware to the emulated
environment. The final stage acts as a validation step to ensure
that emulation accurately represents real-world behavior and
provides deployment confidence.

3 Results

Early Outcome. With the help of our Zwe® methodology,
we could quickly iterate over different ideas and algorithms.
This led us to develop an improved segmentation algorithm
that shares sparse parts (segments) of the model in each ag-
gregation round based on their importance [1]. It outperforms
previous methods, not only on the digital twins but also in real
measurements. This process would have been significantly
more difficult and time-consuming without the twins.
Fidelity: Simulation vs. Emulation vs. Real Measurement.
We compare convergence over time on our two digital twins
and real measurements over 150 communication rounds. We
implemented four different DFL methods: Decentralized Fed-
erated Averaging (DecFedAvg) [6], AdaStair (AS) [7], our
importance-based method (Imp), and its combination with
AS (Imp&AS). We use ten microcontrollers and a deep neural
network model adapted from [7]. Figure 3 shows the com-
parison across the four methods. While both twins follow the
same trend as the real devices, the simulation twin sometimes
undershoots the accuracy. The emulation twin, on the other
hand, closely resembles the results from physical hardware.
Scalability Analysis. To answer the question of how the num-
ber of participating devices affects convergence, we ran DFL
on 10, 100, and 200 emulated microcontrollers. Performing
such a large-scale experiment on physical hardware would
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Figure 4: Scalability analy- Figure 5: Large-scale emu-
sis across different network lation (200 devices) compar-
sizes. ing different methods.

be impractical and time-consuming, demonstrating the utility
of our twins. Figure 4 depicts the results for our importance-
based method on the emulation twin. As anticipated, a larger
number of devices leads to smaller fluctuations.
Performance Analysis at Scale. We compare the DecFe-
dAvg, AS, Imp, and AS&Imp DFL methods on 200 partici-
pating microcontrollers to inspect their behavior at a larger
scale (Fig. 5). This again highlights the effectiveness of Zwe®
for scalable and robust evaluation.
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